Lecture 3 (Physiological transducers)
Maha K. Omar

SIMULATED ELECTRONICS OF BIOLOGICAL SYSTEMS

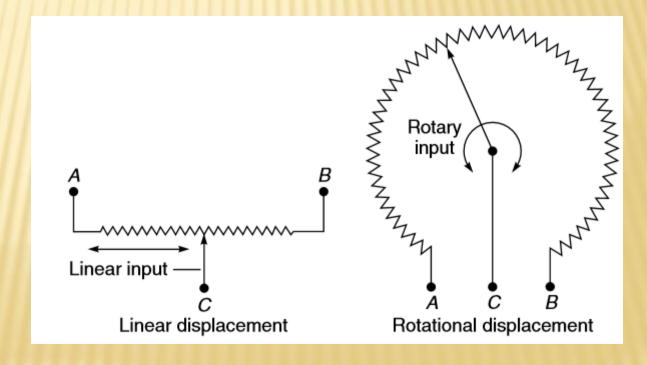
TRANSDUCERS

- Devices that convert one form of energy into another (usually electric).
- * Factors affecting transducers choice.
- * Transducers classifications.
 - + Active/passive
 - + Principle used
 - Measured physiological variable

TRANSDUCERS PERFORMANCE CHARACTERIST.

* Static

- + Accuracy—Precision—Resolution—Drift—Linearity
- + Threshold---Noise---Saturation----Conformance

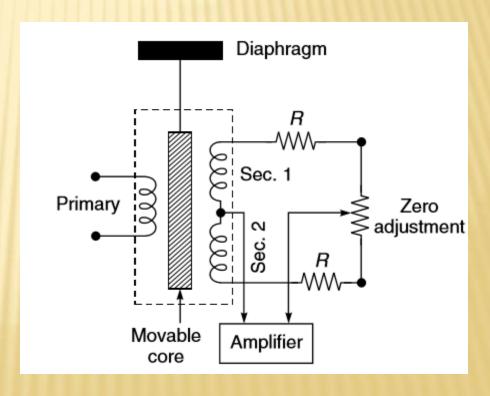

Dynamic

- + Zero-order system
- + First-order system
- + Second-order system.

DISPLACEMENT/POSITION/MOTION

POTENTIOMETRIC TRANSDUCERS

- Position/displacement/ motion
- Direct/ indirect measurements
- linear/angular displacement


VARIABLE CAPACITANCE/INDUCTANCE

- Hyperbolic displacement/capacitance relation and linear relation.
- How to incorporate it in a circuit.
- Advantages/Disadvantages
- How to relate inductance and displacement
- Variable reluctance transducer.
- Relation of displacement/inductance is non linear.

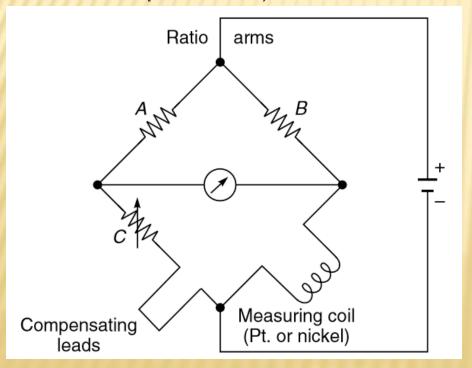
LINEAR VARIABLE DIFFERENTIAL TRANS.(LVDT)

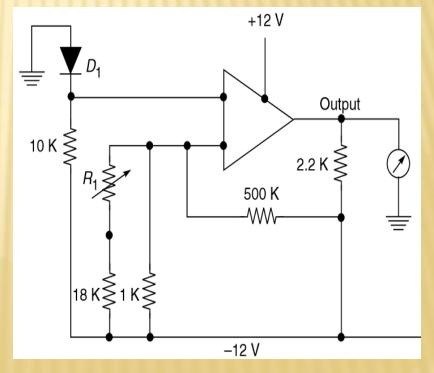
Differential transformers are designed where the central primary coil is connected to a sinewave, the two other secondary coils create outputs that are equal in magnitude and opposite in phase.

PRESSURE TRANSDUCERS

- Pressure transducers are flexible diaphragm which gets deformed by the action of pressure exerted on it.
- Absolute/Gauge pressure.
- × Types
 - + Capacitance manometer
 - + Differential transformer
 - + Strain gauge
- LVDT pressure transducer consists of: a plastic dome stainless steel diaphragm—core assembly with plastic body containing LVDT coil.
- Strain gauge pressure transducers is based upon changes in wire resistance produced due to small mechanical displacements.
- ***** Gauge Factor $g=(\Delta R/R)/(\Delta L/L)$ determine the senstivity of thee strain guage.

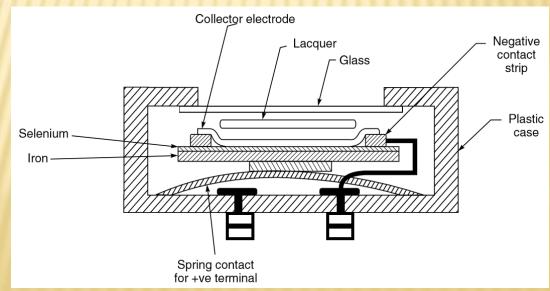
TEMPERATURE TRANSDUCERS


- Resistance thermometers measure absolute temperature while thermocouples generally measure relative temperature.
- Thermocouples definition (measuring/reference junction).
 The theory of operation.
- The electrical resistance thermometer
 - + Theory the resistance of a metallic conductor at any temperature is given by $R_t=R_0(1+\alpha t)$
 - + Wheatstone bridge (definition and schematic)
 - An AC bridge is recommended to neglect any electrochemical or polarization effects
 - + The dummy or compensating leads.


Silicon diode

- + The voltage drop across a forward bias silicon diode varies with temperature.
- + Disadvantages (require a stable calibrated source).
- Advantages can be the small integrated circuit with the transducers.

TEMPERATURE SENSORS


- Chemical thermometry
 - + Theory
 - + Advantages (better contact-less cross contamination
 - Disadvantages(small resolution slow response-modify skin temperature)

PHOTOELECTRIC AND OPTICAL FIBERS

- Photoelectric transducers
 - + Theory
 - + Types (photovolatic (no external source)-photoemissive (require external source))
 - + Disadvantages (fail to respond immediately-need time to warm up)
- Optical fiber sensors
 - + Advantages & types
 - + Photometric sensors for amplitude and frequency measurements

